La historia del álgebra comenzó en el antiguo Egipto y Babilonia, donde fueron capaces de resolver ecuaciones lineales y cuadráticas, así como ecuaciones indeterminadas como con varias incógnitas. Esta antigua sabiduría sobre resolución de ecuaciones encontró, a su vez, acogida en el mundo islámico, en donde se la llamó "ciencia de reducción y equilibrio". (La palabra árabe al-yabr que significa "reducción", es el origen de la palabra álgebra). A los árabes se debe el desarrollo del Álgebra (siglo IX). Al-Juarismi, el más grande matemático musulmán, escribió uno de los primeros libros árabes de álgebra "Kitab al-muhtasar fi hisad al-gabr wa-al-muqabala", de donde deriva el nombre de esta ciencia. Al-gabr significa ecuación o restauración; al-muqabala son los términos que hay que agregar o quitar para que la igualdad no se altere. Por esto, en rigor, el Álgebra no es más que una teoría de las ecuaciones.(Baldor A., 1992).
En las civilizaciones antiguas se escribían las expresiones algebraicas utilizando abreviaturas sólo ocasionalmente; sin embargo, en la edad media, los matemáticos árabes fueron capaces de describir cualquier potencia de la incógnita x, y desarrollaron el álgebra fundamental de los polinomios, aunque sin usar lossímbolos modernos. La traducción al latín del Álgebra de Al-Jwarizmi fue publicada en el siglo XII.
Un avance importante en el Álgebra fue la introducción, en el siglo XVI, de símbolos para las incógnitas y para las operaciones y potencias algebraicas. Debido a este avance, el Libro III de la Geometría (1637), escrito por el matemático y filósofo francés René Descartes se parece bastante a un texto moderno de Álgebra. Sin embargo, la contribución más importante de Descartes a la Matemática fue el descubrimiento de la Geometría Analítica, que reduce la resolución de problemas geométricos a la resolución de problemas algebraicos. Su libro de Geometría contiene también los fundamentos de un curso de teoría de ecuaciones, incluyendo lo que el propio Descartes llamó la regla de los signos para contar el número de raíces verdaderas (positivas) y falsas (negativas) de una ecuación. (Biblioteca de Consulta Microsoft Encarta 2004)
En la actualidad los conocimientos del Álgebra han encontrado aplicaciones en todas las ramas de la Matemática y en muchas otras ciencias llegando a ser empleados hasta para investigaciones sobre las leyes del pensamiento.
Leer más: http://www.monografias.com/trabajos89/introduccion-al-algrebra/introduccion-al-algrebra.shtml#ixzz34YvaBXCv
No hay comentarios:
Publicar un comentario